Hypersonic-Flow Governing Equations with Electromagnetic Fields

نویسنده

  • D. Giordano
چکیده

The paper deals with the formulation of a consistent set of governing equations apt to describe the physical phenomenology comprising the hypersonic flow field of an ionized gas mixture and the electromagnetic field. The governing equations of the flow field and those of the electromagnetic field are revisited in sequence and differences or similarities with past treatments are pointed out and discussed. The equations governing the flow field hinge on the customary balance of masses, momenta and energies. The equations governing the electromagnetic field are introduced both directly in terms of the Maxwell equations and by recourse to the scalar and vector potentials. The theory of linear irreversible thermodynamics based on the entropy-balance equation is also revisited for the purpose of obtaining, consistently with the presence of the electromagnetic field, the phenomenological relations required to bring the governing equations into a mathematically closed form. Old problems, such as the influence of the medium compressibility on chemical-relaxation rates or the importance of cross effects among generalized fluxes and forces, are re-discussed; additional problems, such as the necessity to consider the tensorial nature of the transport properties because of the presence of the magnetic field, are pointed out. A non-conventional choice of first-tensorial-order generalized forces and corresponding fluxes is proposed which appears to offer more simplicity and better convenience from a conceptual point of view when compared to alternative definitions customarily used in the literature. The applicability domain of the present formulation is clearly outlined and recommendations for further work are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Viscous Shock-Layer Analysis of Axisymmetric Bodies in Perfect Gas Hypersonic Flow

In this paper, an approximate axisymmetric method is developed which can reliably calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s second-order pressure expression is used instead of the normal momentum equation. The combination of Maslen’s second-order pressure expression and viscous shock layer equations is developed to accurately and efficiently com...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<<1) calculated ba...

متن کامل

A Closed-Form Full-State Feedback Controller for Stabilization of 3D Magnetohydrodynamic Channel Flow

We present a boundary feedback law that stabilizes the velocity, pressure, and electromagnetic fields in a magnetohydrodynamic (MHD) channel flow. The MHD channel flow, also known as Hartmann flow, is a benchmark for applications such as cooling, hypersonic flight, and propulsion. It involves an electrically conducting fluid moving between parallel plates in the presence of an externally impose...

متن کامل

Global Existence and Uniqueness of Strong Solutions for the Magnetohydrodynamic Equations

Magnetohydrodynamics MHD concerns the motion of a conducting fluid in an electromagnetic field with a very wide range of applications. The dynamic motion of the fluids and the magnetic field strongly interact each other, and thus, both the hydrodynamic and electrodynamic effects have to be considered. The governing equations of the plane magnetohydrodynamic compressible flows have the following...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012